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Experiments have shown that the two-dimensional flow near a forward stagnation 
line may be unstable to three-dimensional disturbances. The growing disturbance 
takes the form of secondary vortices, i.e. vortices more or less parallel to the original 
streamlines. The instability is usually confined to the boundary layer and the spacing 
of the secondary vortices is of the order of the boundary-layer thickness. This situation 
is analysed theoretically for the case of infinitesimal disturbances of the type first 
studied by Gortler and Hammerlin. These are disturbances periodic in the direction 
perpendicular to the plane of the flow, in the limit of infinite Reynolds number. It is 
shown that the flow is alwhys stable to these disturbances. 

1. Introduction 
The idea that the flow near a two-dimensional stagnation point may be unstable was 

first put forward by Gortler (1955). The mechanism which will create the instability, 
if any, is the centrifugal instability which was investigated by Taylor (1923) for the 
case of Couette motion and by Gortler (1940) for the case of boundary-layer flow on a 
concave wall, and which may occur (as in the present situation) in any flow with curved 
streamlines when the fluid on the inside of the curve is moving sufficiently rapidly 
compared with the fluid on the outside. 

When this form of instability occurs the growing disturbance takes the form of a 
secondary motion whose vortex lines more or less coincide with the undisturbed 
streamlines. In  many cases the secondary motion will cease to grow, at a certain 
amplitude, and the ultimate state of the flow will comprise the original basic flow 
together with a steady secondary motion in the form of cells spaced transversely 
to the basic flow. In some of the experiments on stagnation-point flows (to be described 
later) the cells grow spatially (i.e. the amplitude of the secondary motion grows) in the 
streamwise direction. 

Gortler (1955) obtained the linearized disturbance equations in the case of two- 
dimensional stagnation flow against an infinite plane and the equations were studied 
in detail by Hammerlin (1955). The disturbance quantities are assumed, in the usual 
way, to be proportional to exp (/3t + iaz), where z is measured normal to the plane of the 
flow, and the problem is to determine /I, given a. It is customary to focus attention on 
the case = 0, when a should be determined as an eigenvalue of the resulting system. 
However Hammerlin (1 955) concluded that the eigenvalues form a continuous 
spectrum, 0 < a < 1. 
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The flow studied by Gortler and Hiimmerlin is of course the appropriate model for 
flow near the forward stagnation line on a two-dimensional blunt body, when the 
Reynolds number R is large. When the equations are written in boundary-layer 
variables R no longer appears, leaving a and p as the only explicit parameters. There 
is, therefore, no possibility of obtaining the usual curve of neutral stability in the 
a, R plane; only the asymptote as R -+ to can be found. 

Hammerlin’s result seams unsatisfactory because a unique eigenvalue would be 
expected, and the problem was re-examined by Kestin & Wood (1970), who argued 
(correctly in our opinion) that the root cause of the trouble lies in the over-idealization 
of the problem as considered by GortIer and Hammerlin. There is no natural length 
scale in this model and one suspects that, as a result, vital information about the 
structure of the flow at infinity has been lost. In  order to retain some of the geometry 
of a realistic flow, Kestin & Wood (1970) derived the disturbance equations for the 
flow near the forward stagnation point on a circular cylinder and argued that certain 
small terms, associated with the curvature of the wall, must be retained in order to 
obtain a unique eigenvalue. In  this work it will be argued that the remedy given by 
Kestin & Wood is incorrect and that the correct solution is actually simpler; the 
equations of Gortler and Hammerlin lead to a unique eigenvalue provided that the 
information at  inflnity is used to derive the correct boundary condition. In  particular 
it will be shown that boundary curvature is irrelevant (by considering the flow past 
a flat plate of finite width set broadside on to the stream) and that the cylinder problem 
considered by Kestin & Wood, and indeed the corresponding problem for any blunt- 
nosed body, can be reduced for R -+ 00 to the flat-plate problem. [The problem referred 
to here is the determination of the eigenvalues of the disturbance equations; of course 
the spatial growth of the disturbance will be modified by the details of the boundary 
shape.] 

The main purpose of the present work, then, is to present the numerical solution of 
the disturbance equations proposed by Gortler (1  955) together with the more stringent 
boundary conditions at infinity, to be explained in the next section. It turns out that 
on setting /3 = 0 there is no eigenvalue a (this is the problem for which Hammerlin 
(1955) obtained a continuous spectrum). This means that there is no neutral wave- 
number. The equations were then solved by restoring /3 to the equations and solving 
for p as an eigenvalue with a prescribed. The result is that /3 < 0 for all a, with the 
implication that the flow is stable. 

There is, however, considerable experimental evidence that instability of this kind 
can occur. Experiments on two-dimensional flow past blunt bodies have been described 
by Kestin & Wood (1970), Brun, Diep & Kestin (1966), Colak-Antic (1971) and 
Hassler (1971); the results are summarized in figure 1. Other experiments, on wedges 
and cones, are reported by Gortler & Hassler (1973). It must be concluded that this 
instability is, as yet, not satisfactorily explained. 

2. Flow past a transverse flat plate 
We consider here the flow of a uniform stream of speed U, past a flat plate of finite 

width 2d set symmetrically broadside on to the stream. Cartesian axes are fixed in the 
plate with the origin 0 at the centre, x measured along the plate in the plane of the flow 
and y normal to the plate and pointing upstream. 
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FIQURE 1. Experimental results. The dimensionless wavelength h/2d is plotted against R-4. 
0, 0 ,  Kestin & Wood, lower and higher turbulence intensity; 0: m, Brun et al., lower and higher 
turbulence intensity. Colak-Antic or Hassler: A,  near the stagnation line; V, 4’ from the stagna- 
tion line; x , average values obtained from photographs. According to the theory these points 
should lie on straight lines through the origin. The straight line shown corresponds to the 
least-damped waves in the present theory, for which a = 0.298. 

The first preliminary is to work out the boundary layer near the stagnation point 
(the origin). The potential flow past the plate is easily obtained and gives the dimen- 
sionless stream function near the stagnation point as 

@ = xy + 2X3y. (2.1) 

Here terms in x6, and y3, etc. have been ignored. To obtain the boundary layer we set 
rj = Rty  and YP = Rt@; the equation and boundary conditions are satisfied by 
Y = xF(7) ,  where F satisfies 

together with F(0)  = F’(0) = 0 and F’(o0) = 1,  in the usual way. Here we are also 
ignoring the term in x3 in (2.1); this will be considered later. 

The velocity components in the boundary layer of this basic flow are ( U ,  V ,  0 ) ,  
where U = YP, and V = - R-W, .  To obtain the stability problem we study small 
perturbations of these, i.e. we let the velocity be ( U  + u, V + v ,  w) and linearize the 
equations. This is a familiar process and we shall not give the details here. It is necessary 
to introduce a scaled co-ordinate transverse to the flow, Z = Rkz, and scaled distur- 
bance velocity components w* = R4w and v* = Rtv. It is also appropriate to assume 
that all disturbance quantities are proportional to exp (iaZ +/3t). The introduction of 
Z is equivalent to rescaling the wavenumber a and indicates that the expected trans- 
verse wavelength is of the same order as the boundary-layer thickness. The velocity 
components are scaled in order to keep them of the same order as the basic boundary- 
layer velocities. 

F”’+FF”-F’2+1 = 0 (2.2) 

The continuity equation becomes 
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and the linearized equations are 
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(2-4) 

Here p denotes the disturbance pressure. The somewhat unusual appearance of this 
set of equations has been retained in order to explain one or two points concerning the 
terms which are negligible. First it is apparent that p must be rescaled by a factor R, 
which will cause it to disappear from (2.4). Next, since x has not been rescaled the X 

derivatives on the right-hand sides are small. It might be thought, therefore, that the 
neglect of these terms would be in order when x = O(1) but not when x = O(R-i) ,  
necessitating a separate asymptotic theory in this region. However this turns out to be 
unnecessary because the solution to be obtained for x = O( 1 )  vanishes identically when 
substituted into the neglected terms and is thus uniformly valid down to X = 0. This 
form of solution, proposed by Gortler (1955),  is 

u = xuo(??), v* = vo(q), w* = wo(vh P = ( P / m P o ( T )  (2.7) 

the and each expression is of course to be multiplied by exp (;az+pt). There 
following system of equations: 

u,+v;+iaw, = 0, (2.3a) 

( 2 . 4 ~ )  

( 2 . 5 ~ )  

U; + Fu; - (a2 +p + 2F') U, = P"v,, 

V;  + F v ~  - (a2 +p - F') 8, = P A ,  
w;+ F w ~  - (012 +p)  0, = i~ lp , .  ( 2 . 6 4  

It is interesting to obtain the equation for the secondary vorticity, i.e. the x com- 
ponent of the vorticity. This is given by SZ, = wh - iav, and satisfies the equation 

!2,"+FR;-(a2+P-P')Ro = 0. (2.8) 

This system was obtained by Kestin & Wood (1970), together with a number of 

On the solid boundary we have the usual condition 
small terms associated with the curvature of the boundary. 

u,=v,=w,=O on 7 = 0  (2.9) 

and we turn now to the crucial question of the boundary conditions at infinity. 
Gortler and Hammerlin proposed that u,, vo and w, are o( 1 )  as 7 -+ 00 (i.e. they merely 
tend to zero), and Hammerlin deduced that when 8 = 0 the eigenvalues a form a 
continuous spectrum over 0 < a < 1. Kestin & Wood (1970) argued that the reason 
why a unique eigenvalue is not obtained lies in the fact that the coefficient function 
F appearing here is only an approximation and that the retention of certain small 
terms in the system will alter its character at infinity in such a way as to produce a 
discrete spectrum. They proposed that letting R -+ co with 7 = Riy fixed, which gives 
the system (2 .3a) - (2 .6~) ,  is not strictly valid because the terms so neglected are 
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important outside the boundary layer, i.e. as v-+ 00. While in a sense this is true, as 
a remedy for the difficulty before us it is misconceived. What is developed here is an 
asymptotic theory, as R -+ 00, which will give the first term in the asymptotic expan- 
sion of the eigenvalue /3 as R -+ 00. The system (3 .2a) - (3 .5a)  is the ‘inner’ set of 
equations valid for fixed q and should be complemented by another set, the outer set, 
valid for fixed y as R -+ 00, and the boundary condition a t  infinity on the inner set 
should be obtained by matching. (We shall in fact avoid this procedure, which seems 
in any case to be intractable.) But it is quite wrong in general to attempt to derive the 
outer system from the inner system merely by altering the coefficient functions to some 
composite approximation; it must be obtained from the full equations. 

Kestin & Wood concentrated on the vorticity equation (2 .8) ,  and attempted to derive 
boundary conditions on it which would produce a discrete eigenvalue spectrum. They 
appear in fact to have derived the boundary condition on the wall from the equation 
itself, a procedure which cannot be correct, and although the wall condition can 
presumably be written in the form Q’(0) +rQ(O) = 0 (as they conclude), since higher 
derivatives can be eliminatedbymeansof the equation, the constant y will depend on a, 
the eigenvalue, in a unknown way. For this reason alone the results from the spectral 
theory of singular differential operators quoted by them are inapplicable. 

However it is the condition a t  infinity which is crucial; here Kestin & Wood recast 
(2 .8)  by replacing F(C) by the ‘large constant’ Rh. The resulting equation has a solution 
which is exponentially small at infinity and they used this by requiring that (2 .8)  
should have this solution as its asymptotic form. However it is clear that (2 .8 )  does not 
have a solution which meets this requirement and in any case the idea is miscon- 
ceived; for if we revert to outer variables ( y  instead of 7) in the coefficient we must do 
likewise in the derivatives, and there results [from (2 .8 ) ]  d(Qy)/dy - a2Q = 0, the non- 
trivial solution of which is exponentially large as y -+ 00. The conclusion is that Q = 0 
in the outer region, which is no more than the condition applied by Gortler and 
Hiimmerlin. The point here is simply that the far field of the boundary-layer function 
F is the near field of the potential flow, and this increases linearly (or rather decreases 
as y + 0)  and is not approximately a constant. 

Here it is proposed that the disturbance quantities should tend to zero exponentially, 
as y -+ 00, and several reasons will be given for this. First we note that the mainstream 
vorticity decays exponentially outside the boundary layer. We give below an argument 
to  show why the instability can originate only in the region of appreciable mainstream 
vorticity, i.e. the boundary layer; once this has been done it is natural to require 
exponential decay of the disturbance vorticity because this can penetrate upstream 
of the boundary layer only by diffusion. 

To see why the destabilizing forces are confined to the boundary layer we must 
reconsider the well-known result, due to Rayleigh, for flow with circular streamlines: 
that the flow is stable or unstable according as the square of the circulation increases or 
decreases outwards. Viscosity will act to damp out the disturbance and it is the balance 
between these two effects which was studied by Taylor (1923).  (We emphasize that the 
destabilizing forces are inviscid in character; although it is well known that viscous 
forces may destabilize a parallel shear flow, that mechanism is quite different to the 
one being considered here.) 

The generalization of Rayleigh’s criterion to arbitrary two-dimensional inviscid 
flow was given by Scorer & Wilson (1963).  A stream surface is supposed to suffer a 
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disturbance in the form of a small corrugation in the spanwise direction; this distur- 
bance is steady but may grow spatially in the streamwise direction. The principal result 
may be stated as follows. Let # denote the angle between the disturbed stream surface 
and its undisturbed form, at  any point, and let s denote arc length measured along the 
streamline at that point. Then 

d2#/ds2 = ( K W / q )  sin #, 

where K is the streamline curvature, w is the undisturbed vorticity and q is the speed. 
Thus the left-hand side is the rate of increase of secondary vorticity following a particle. 

The equation shows that the generalization of Rayleigh’s criterion is that the 00w is 
stable or unstable according as KW is negative or positive. A small disturbance causes 
the vorticity vector to acquire fist of all a component along the principal normal to 
the streamlines and then, when the streamlines are curved, a component along the 
tangent. If this component has the same direction as the vorticity of the original 
disturbance, the disturbance will tend to grow. As in the case of Couette flow, viscosity 
will tend to damp out the disturbance, so that it does not follow that KW > 0 implies 
instability (although KW < 0 implies stability); the conclusion we wish to draw is that 
the destabilizing forces are confined to the region where w is appreciable, namely the 
boundary layer. (Note that the velocity gradient along the  normal to the streamlines is 
not the same as the vorticity; this quantity is in fact appreciable outside the boundary 
layer. ) 

We have argued that the disturbance vorticity should be exponentially small out- 
side the boundary layer; this enforces exponential decay of the velocity components 
as may be seen from the asymptotic forms given in the next section. A further, more 
mathematical, argument in favour of exponential decay is as follows. This is really 
a matching problem, and it is well known that exponential decay is almost invariably 
required in such problems, algebraic decay usually leading to inconsistencies at  higher 
orders. In  the present case it would be necessary at  the next order to determine a 
potential function having variations in the z direction of length scale R-4.i The formal 
difficulties prevent the solution being carried out to the point where inconsistencies 
actually appear (in the form of ‘impossible ’ boundary-value problems) but the 
arguments in favour of exponential decay seem to be reasonably conclusive. Similar 
conclusions were reached by Kelly (1962), who considered an eigenvalue problem 
somewhat resembling the present one. 

Finally we show that the requirement of exponential decay will very probably con- 
vert the continuous spectrum found by Hammerlin into a discrete spectrum by 
considering the model eigenvalue problem 

d2R dR 
-+r]-++ysz = 0, R(0) = 0, ysz(C0) = 0. 
dV2 d7 

This bears a close resemblance to (2.8) since F N 7 at infinity. If we merely require 
~ ( C O )  = 0 then any s > 0 is an eigenvalue since the solutions have the asymptotic forms 
7-a and v8-l exp ( - $72). The requirement of exponential decay eliminates the first 
solution and now the condition at 7 = 0 produces a discrete spectrum, easily shown in 
in fact to consist of the even integers. 

t The author is indebted to a referee for this remark. 
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The numerical solution proved to be a difficult and delicate matter and since the 
accuracy of this solution is the crux of the whole analysis it seems important to give 
some explanation of it. This is given in the next section together with some discussion of 
the results. 

Finally in this section we show briefly how the flow past a circular cylinder (and 
hence obviously any blunt-nosed body) leads to the same eigenvalue problem. We 
take axes Oxyz with 0 at the stagnation point, x measured round the cylinder, y normal 
to it and z parallel to the generators. (This is the system used by Kestin & Wood.) Thus 
these co-ordinates are related to cylindrical polars ( r ,  8, z )  by r = 1 + y and 8 = x in 
dimensionless form. The potential flow and the basic boundary layer are easily obtained 
as power series in x ,  and we shall merely note here that the first term in the boundary- 
layer series is the same as for the flat plate. 

We now obtain the disturbance equations as in the previous section, introducing the 
same boundary-layer variables. The momentum equations, replacing (2.4) and (2.5), 
are 

av* av* 
1 ax an 

JYv* - ’P’.,,U + YP - - Y,, V* - Y, - - 2R4Y1 u 

and the other equation is the same to leading order in R. Again certain small terms have 
been retained, which might become important when x is small, and a large number of 
terms of relative order R-* (to the largest retained) have been omitted. The centrifugal 
effects are contained in t8he last terms on the left-hand sides. Clearly the bracket con- 
taining two terms in (2.10) can safely be neglected. Considerably more alarming is the 
apparently large term in R4 on the left of (2.11). However we may remove this term by 
rescaling x ;  that is, we put E = Rjx and u* = R h ,  then note that Y, = xF’ = RtEF’ 
and we see that this term is of relative order R-4 and may be neglected. The equations 
are not quite the same as (2.4) and (2.5) because the terms in a2u*/af2 and a2v*/at2 have 
entered on the right-hand sides, but on substitution of the form of solution corre- 
sponding to (2.7), u* = tug,  etc., we recover (2 .3a)-(2.6~) .  

The term Y,u was also neglected by Kestin & Wood (1970), but they did not 
estimate the range of x for which this approximation is valid [x = O(R-t)]. 

The centrifugal terms are obviously important when x = O( 1) and to calculate their 
effect it  is first necessary to study the region in which all those terms on the left of (2.1 1)  
are equal in importance, which turns out to be x = O(R-4). This has not been pursued 
here as there is no reason to suppose that it will affect the question of stability; it  will 
merely affect the downstream growth of the disturbance. 
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3. Numerical solution 

(2.6a) and (2.8). After extracting the real part and eliminatingpo this becomes 
Here we outline the numerical solution of the eigenvalue problem defined by ( 2 . 3 ~ ) -  

I uo -i- v; + awo = 0, 
u;l + Pu; - (012 + p + 2P') uo = P"vo, 
n;l+Fn;-(az+/9-F')no = 0, 

no = w; + avo. 

We have the boundary conditions a t  31 = 0 given by (2.9) and by considering the 
behaviour of (3.1 ) as 31 -+ cn the boundary conditions there can be written as 

(3.2) I Q, - A 5-a8--8 exp ( - tC2), 
uo - BC-a2--P-3 exp ( - QC2), 
oo - C exp ( - 015) - aAY-a*--P-Zexp ( - t C 2 ) ,  
wo - C exp ( - ocl) - Af;-~*--19-~ exp ( - $y2), 

where 5 = q - 0.64790, this number being the result of the numerical integration of the 
equation for P, equation (2.2). 

Prolonged attempts were made to solve this system by shooting methods and by 
finite differences, and were eventually abandoned. Although some progress had been 
made the computations were proving far too expensive. The problem was eventually 
solved using the ideas of invariant imbedding and Riccati transformations (see for 
example Scott 1973; Aziz 1973). 

Here we introduce vectors y, and y, given by 

y? = (uo, vo, wo), Y; = ( 4 3 ,  Qo, (3.3) 

The system (3.1) can be written as a first-order system in these variables, t.aking the 
form 

(3.4) 

where A,, A,, A, and A, are 3 x 3 matrices. Now let y, = Ry,; substituting into (3.4) 
we find that R satisfies the equation 

R' =A,R-RA,+A,-RAaR (3.5) 

and it may be shown that the initial condition on R is 

R(0) = 0. (3.6) 

(The partitioning of the system into y1 and y, was designed to produce this convenient 
starting value.) 

It is now straightforward in principle to integrate (3.5) out to some suitably large 
value of y, and arrange a match with the conditions (3.2). However it is easy to show 
that R will contain exponentially large elements (which were observed numerically) 
and it is better to switch to the matrix S = R-l, which contains no exponentially large 
elements and satisfies a similar equation to (3.5): 

S' = ApS-SAI+Az-SASS. (3.7) 
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U P 
0.005 - 1.513 
0.1 - 1.436 
0.2 - 1.390 
0.298 - 1.3754 
0.3 - 1.376 
0.4 - 1.390 

U P 
0.5 - 1.433 
0.6 - 1.601 
0.7 - 1.595 
0.8 - 1.712 
0.9 - 1.853 

TABLE 1. Wavenumber u and corresponding growth rate 8. 

The matrix S is much cheaper to calculate than R. The switch from R to S was made 
at 7 = 1.  

In  order to incorporate the boundary conditions at infinity into the scheme we write 

Yl = M,a, Y, = M,a, (3.8) 

where aT = ( A ,  B, C) and M, and M, are 3 x 3 matrices whose elements are the 
exponentially small factors contained in (3.2). Then at infinity we have 

M,a = RM,a, (3.9) 

or equivalently, SM,a = M,a. (3.10) 

It is necessary to have non-trivial solutions for a and so the condition at  infinity is 

det (SM,- M,) = 0. (3.11) 

The results are given in table 1 and it is believed that they are accurate to all the 
figures given. They were not particularly sensitive to the value chosen for infinity, 
usually 7 = 6, except for small values of a, when it was necessary to integrate out to 
q = 10 to obtain the required accuracy. The range 1 < CL < 10 was investigated and 
the values of p obtained were always less than the value at a = 1.  

The possibility that there is another set of eigenvalues with positive values of ,8 was 
checked by investigating the region 0 < /3 < 10 for selected values of a, but none were 
found. There was some evidence of another set of values of /3 below those given here 
but this was not pursued in detail. 

All calculations were performed on the University of Manchester Regional Com- 
puter Centre CDC 7600 computer. Details of the integration routines, etc. are available 
from the authors, and these and descriptions of the shooting methods and finite- 
difference methods are available as a University of Manchester Numerical Analysis 
Report, no. 18. 

4. Conclusions 
It has been shown that viscous stagnation-point flow is stable to infinitesimal 

disturbances, periodic in the direction normal to the plane of the flow, in the limit of 
infinite Reynolds number. The experimental evidence for instability therefore requires 
some discussion. There are three limitations on the theory which may account €or the 
disagreement. 

(a) Infinite Reynolds number. Since experiments are of course carried out at finite 
R (and in many cases not particularly large R), a correction might be thought necessary. 
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It is known that a.paralle1 shear flow can be unstable (to two-dimensional distur- 
bances) at finite R but stable at infinite R. However it is unlikely that this will be the 
case here; one may make a comparison with cylindrical Couette flow, which is unstable 
a t  all values of the Taylor number above the critical value. 

( b )  The theory is limited to the immediate neighbourhood of the stagnation line, 
in fact up to x = O(R-?t), which is about i0 for a circular cylinder in most cases. For 
practical reasons most measurements were taken a few degrees round the cylinder 
from the stagnation line, where the vortices had grown to sufficient strength. We may 
suppose that the wavelength (as distinct from the amplitude) is not greatly affected by 
this for the folIowing reason. It is not difficult to see how the disturbance solution can 
be extended round the cylinder as a power series in x, using the known solution for the 
basic flow (which is also a power series in 2). This process will generate systems of 
equations similar to (2.3a)-(2.6a) with non-zero right-hand sides; the left-hand sides 
will not, however, be identical because of the higher powers of x involved. Therefore the 
value of p already obtained is not an eigenvalue of the new homogeneous system and 
the existence of a solution for the higher terms is assured. 

(c) Nonlinear effects. The experiments show a feature not evident in the theory, 
which is that the secondary vortices grow in amplitude away from the stagnation line, 
and presumably a t  some stage nonlinear effects will become important. It is possible 
that the least-damped waves, for which a = 0.298, would be unstable to finite distur- 
bances, and the nonlinear effects would presumably also have some effect on the wave- 
length. If any such nonlinear theory were to yield a unique most-unstable wave- 
number a,  the theory would predict that the experimental points should lie on a 
straight line through the origin, having slope For the least-damped waves in 
the present theory this number is about 1.05, so that all observed waves have shorter 
wavelengths. The observations do in fact lie fairly close to a line having slope about 0.5, 
corresponding to a N 0-6. 

It seems more likely that the growth of the vortices away from the stagnation line 
is due to vortex stretching by the main flow as suggested by Kestin & Wood, but it is 
still necessary to explain how the secondary vortices originate near the stagnation line. 
It is unlikely that the secondary vortices are produced simply as a, result of the ampli- 
fication, by the stretching mechanism, of small vortices already present in the on- 
coming stream, and there are two reasons for this. First, in the experiments of Hassler 
and Colak-Antic the solid body was towed through a water tank in which the water was 
at rest, so that the ‘free-stream’ vorticity would have been exceedingly small. Second, 
the experimental results, summarized in figure 1, suggest strongly that the spacing of 
the secondary vortices is determined by the boundary-layer thickness; this in turn 
auggests that they are due to some definite boundary-layer instability. 

An ambiguous feature of the experiments is the role of free-stream turbulence. The 
experiments of Kestin & Wood (1970) show that increasing the intensity of the 
turbulence reduces the wavelength, but Brun et al. (1966) found the reverse. The pair 
of points in the diagram taken from their results is not an isolated result; experiments 
were carried out with yawed cylinders and only the results for zero yaw angle are 
given here, but the effect of turbulence was the same a t  all angles. 

The main part of this work was carried out while one of the authors (Wilson) was 
on leave a t  the D.F.V.L.R., Freiburg, West Germany, and he would like to express his 
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thanks to Professor H.GOrtler for arranging this invitation and for suggesting the 
topic. It is also a pleasure to acknowledge the generosity and efficiency of the Alexander 
von Humboldt-Stiftung , who provided financial support. 
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